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Quantum Search and Beyond

Lov K. Grover, lkgrover@bell-labs.com
Bell Laboratories, Lucent Technologies,

1D-435, 600-700 Mountain Avenue, Murray Hill NJ 07974

Abstract

Ten years ago, the quantum search algorithm was designed to provide
a way of searching a space of N items in only

√
N steps. In the last

ten years, it has been used as a building block for numerous applications,
both physical and algorithmic - these are as diverse as precision mea-
surement and communication complexity. It has been generalized to the
amplitude amplification principle in which form it can be used to give a
square-root speed-up to almost any probabilistic algorithm. Our research
during this period has led to further developments into the applications of
quantum searching, including three new variants of quantum searching -
partial quantum searching, fixed point quantum searching & super-linear
amplitude amplification.
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1 Foreword

Folklore is that writing a report is one of the dullest parts of research. This
report is turning out to be different. There were tremendous numbers of ideas
generated during this period, unfortunately only a fraction of them will ever
be written. When reviewing them for writing this report it is very difficult not
to get sucked into several hours or even days of research where one reexamines
them in the light of the present state of one’s knowledge.

This is an exciting time to be in the area of quantum computing. Almost
every week sees the emergence of important new applications for quantum com-
puters as well as new designs that would enable their implementation. The
emphasis of my research continues to be the former, i.e. to understand and
develop the computational power in a quantum computer.

The framework for quantum computation consists of unitary operations.
From a computational perspective these are considerably more general than
classical computation which mostly consists of the evaluation of boolean func-
tions. Yet, despite this apparent power, only two significant applications have
been invented where a quantum computer have a significant advantage over a
classical one. The first is factorization and the second is searching.

In 1994, Peter Shor invented an algorithm for factorization. This was expo-
nentially faster than any known classical algorithm and solved a problem that
mathematicians and computer scientists had been grappling with for years. This
discovery gave a boost to the field and to date remains the most powerful po-
tential application for a quantum computer.

In 1996, I invented the quantum search algorithm. The search algorithm
made use of the fact that a quantum system could simultaneously be in mul-
tiple states, to search an unsorted database of size N in only

√
N steps. The

quantum search algorithm is perhaps the simplest possible quantum algorithm
and because of its simplicity and power it attracted considerable interest from
both physicists and computer scientists. It has been proved that no algorithm,
whether quantum mechanical or classical, can ever hope to improve quantum
search for the application of exhaustive searching. In contrast to factorization
which has remained largely a standalone (though very important) application,
several algorithmic extensions of quantum search for related applications have
been made. It continues to provide a constant source of inspiration in a number
of important areas and has by now become an essential part of the toolkit of
the quantum computing scientist.

This period saw the development of the class of recursive quantum algo-
rithms. To date most search algorithms had been iterative, during this pe-
riod we showed the limits of iterative algorithms by developing the fixed point
class of quantum search algorithms These are characterized by the property of
monotonic convergence which cannot be achieved by iterative unitary transfor-
mations.

The other important result during this period was that I0 in the amplitude
amplification transformation could be replaced by any transformation R0, that
has the property that only the 0 state is rotated by π radians, all other states

2
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Figure 1: The quantum search algorithm can be looked upon as a resonant
perturbation. With this perspective, many of the newer ideas (such as replacing
R0 by a selective rotation that shifts the phase of all states) naturally follow.

should be rotated by an amount that is a finite amount away from π (although
this was based on the quantum search algorithm, the breakthrough actually took
place due to work by Ambainis et al in the context of the element distinctness
problem). This considerably expands the scope of amplitude amplification and
has recently led to the development of a large class of random walk algorithms.

A new class of algorithms was proposed in which the amplitude itself rises
quadratically with the number of queries. This would be applicable in situations
where the initial amplitude in the target state is small.

The other important result during this period was the result demonstrating it
is possible to achieve dynamic decoupling by means of appropriately positioned
selectively inverting pulses (these selectively inverted the region from which the
system was to be insulated.) This was similar in spirit to the quantum search
algorithm, the main difference was that the U† transformation was not available
(this is somewhat tangential to our main research and will not be discussed in
this report - for more information, see the PRL article in which this appeared -
reference 24 in section 6).

There was considerable effort spent on NP-completeness, even though this
has not resulted in the desired breakthrough so far, it has helped to develop
new ideas. Also, the breakthrough appears to be much closer.
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2 Extensions to quantum searching

We have investigated several ways, described below, in which the resources
utilized for implementing the quantum search algorithm can be modified, some
of these would help bring practical implementation closer.

It has been proved that the quantum search algorithm is the best possible
algorithm for the exhaustive search problem. The proof for this bound is com-
plicated and based on subtle properties of unitary transformations. We continue
to look for a simpler proof. The proof is rigorous but based on certain assump-
tions. The question we would like to ask is whether there are ways of working
around these assumptions to get a better algorithm. The proofs for the

√
N

bound assumes a decoupling of the oracle from the processing circuitry. The
only interaction among the two is whereby the oracle inverts (or does not invert)
the phase of the desired states in a superposition [Kas02] have shown that the
power of search-related algorithms can depend on the nature of the oracle. It is
not clear whether the proofs for the

√
N bound will hold up for circuits where

the oracle gets entangled with the processing circuitry in intermediate steps of
computation. We took a close look at the proofs (there are several variants of
these) and if we find any loopholes, then try to synthesize circuits that take
advantage of these loopholes. Unfortunately, the proofs are very robust - espe-
cially the [BBBV] proof that in fact appeared before the search algorithm was
discovered.

In classical computation, analog circuits can sometime be more powerful than
digital circuits - neural network circuits are one example of such circuits. Is it
possible to devise analog circuits that might not be limited by the

√
N bound?

Farhi & Gutmann [Far98] do prove a
√
N type bound for analog circuits, this

proof, though in an analog context, is basically similar to the other proofs.
In summary, there have been considerable developments in this direction, most
notably the adiabatic search and the random walk algorithms, though they have
not originated directly from my own research. This is a sub-field that I am now
getting into.

The bounds proved are for the number of queries. What is important is the
total number of steps, or the total time, that the algorithm needs. The partial
inversion about average scheme provides one example of a scheme whereby one
can trade-off additional queries for other processing steps. We continue to look
for other such schemes.

The basic π/3 phase shift quantum search algorithm which was presented in
the original paper is well understood though I believe still not adequately enough
appreciated by the quantum computing community. Just like the quantum
search algorithm took several years after its invention in 1995 for its impact to
be fully appreciated, I believe it will take a few years for the π/3 phase shift
quantum search algorithm to be fully appreciated. This algorithm offers a novel
framework for error correction which is the dominant problem facing quantum
computer implementation. During the year there were a handful of papers on
this algorithm (one by Ben Reichardt and myself and the other by two Chinese
authors). That is barely indicative of the algorithm’s potential - Dan Marinescu
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of the University of Central Florida and author of a recent book on quantum
computation described it as - ”a discovery even more important than the search
algorithm”.

2.1 Partial Inversion about Average

The quantum search algorithm works by repeating an alternating sequence of
operations, the first is an inversion about average operation and the second is a
selective phase inversion. The inversion about average step needs to be done in
the Fourier domain and it requires transforming back and forth from the current
to the Fourier domain. The Fourier domain in this case is the Walsh-Hadamard
domain and it requires as many qubit operations as the qubits required to
represent the data. The partial inversion about average technique shows that
it is not necessary to Fourier transform all the qubits in each step - in fact if
there are N states, and therefore logN qubits, it is just necessary to transform
log(logN) qubits. The price paid for this was a slight increase in the number
of queries (the quantum search algorithm is known to be optimal in terms of
queries and so any changes to the algorithm is almost certain to lead to an
increase in the number of queries). The algorithm this leads to is quite different
from the search algorithm and is likely to have other consequences [Gro02b].

2.2 π/3 phase shift quantum searching

The original quantum search algorithm is known to be the best possible algo-
rithm for exhaustive searching therefore no algorithm will be able to improve
its performance. However, for applications other than exhaustive searching for
a single item, suitably modified algorithms may indeed provide better perfor-
mance. For example if we consider the problem of searching N items when there
are either one target items or two target items with equal probability, the prob-
lem suddenly goes from a well understood problem to an open problem. It is in
this realm when there is uncertainty in the problem parameters, does the new
framework of π/3 phase shift quantum searching, prove most useful.

2.3 Fixed point quantum searching

It was generally believed that iterative quantum transformations could not have
fixed points. This is because quantum transformations are unitary and thus
have eigenvalues with absolute value equal to unity. Therefore any iterative
quantum procedure would have to be periodic and would not be able to have
fixed points. There are two ways round this intrinsic limitation - (i) modify
the iterative nature of the procedure so that the iterations in successive steps
are slightly different, (ii) incorporate measurements in the intermediate steps (so
that the procedure is no longer unitary). I invented the first fixed point quantum
search algorithm which attained its fixed point nature by having slightly different
unitary operations in each iteration - this variation in unitary transformations
follows naturally by concatenation of π/3 phase shifts.

5



Fixed point – point of monotonic convergence (no overshoot).

• Fixed point • Target state of 

(standard) quantum search

Figure 2: Fixed-point quantum search algorithms converge monotonically to the
solution, whereas the standard quantum search algorithm overshoots the target
state, if the number of iterations is more than the optimal number.

Unlike the amplitude amplification transformation, it is not possible to it-
erate the transformation URsU

†RtU |s〉 to obtain larger rotations of the state
vector in a carefully-defined two dimensional Hilbert space (the behavior of an
iterated sequence will be quite different). However, it can be obtained by re-
cursion as follows. The basic idea is to define the transformation Um+1 by the
recursion:

Um+1 = UmRsU
†
mRtUm, U0 = U. (1)

Unlike amplitude amplification, it is not simple to write down the precise op-
eration sequence for Um with large m without working out the full recursion.
Recursion for each m is different and there is no simple structure. Let us illus-
trate this for U2:

U0 = U, U1 = U0RsU
†
0RtU0 = URsU

†RtU

U2 = U1RsU
†
1RtU1 =

(
URsU

†RtU
)
Rs

(
URsU

†RtU
)†
Rt
(
URsU

†RtU
)

= U
(
RsU

†RtU
) (

RsU
†R†tU

)(
R†sU

†RtU
) (
RsU

†RtU
)

(2)

The corresponding transformation for amplitude amplification is:

U
(
IsU

†ItU
) (
IsU

†ItU
) (
IsU

†ItU
) (
IsU

†ItU
)

(3)

Note that in (2), the sequence repeated in each iteration is slightly different

due to the presence of the four operations Rs, R
†
t , R

†
s, Rt. Therefore, we are able

to circumvent the condition regarding repetition of identical unitary operators
that prevented amplitude amplification from having a fixed point.

It came as a big surprise that there existed a second algorithm (based on
measurements) that attained its fixed point by an entirely different mechanism,
yet had the same worst case behavior as the previously discovered unitary fixed
point algorithm (this is described in the 2006 interim report).
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Potentials with periodic evolution can be used to 

move a particle from an s to t state by applying

the quantum search algorithm

• In these potentials, if U(ττττ) 

be time evolution for t, U†

is obtained as U(p- ττττ) 

where p is period.

• .....U(τ)IsU(p- τ)ItU(τ)|s> 

drives the particle from 

any s state to  t state.

Eigenvalues are

w0, 9w0, 25w0 . . .

Period = 1/w0

Eigenvalues are

1/2w0, 3/2 w0, 5/2w0 . . .

Period = 1/w0

Figure 3: The quantum search algorithm results in a natural scheme to move
particles in certain kinds of potential wells.

2.4 Fixed point quantum computing

As mentioned in the previous section, the fixed-point quantum searching al-
gorithms lead to ”probability-like” behavior, i.e. their behavior is somewhere
between quantum and classical. This is significant because it may help us over-
come some of the limitations imposed by quantum computation while preserving
the benefits. An example is moving a particle in a harmonic oscillator potential.

As shown in the diagram below, the particle may start from various initial
reaches the same final state at the end of the sequence of operations. This in
itself is not so surprising since the quantum search algorithm does accomplish
this, e.g. in the amplitude amplification transformation, the source states and
the target states can be arbitrary, i.e. if we repeat the amplitude amplification
transformation the appropriate number of times, we reach the target state.
However this is subject to the constraint that we stop at the right time and

this time depends on the initial state, i.e. the number of iterations is O
(

1
‖Uts‖

)

which clearly depends on the source state. What is surprising is that the particle
reaches the specified final state regardless of the magnitude of ‖Uts‖ provided
the number of iterations is sufficiently high. Note that unlike regular amplitude
amplification, it does not improve the probability of success in each iteration
but at the end of the sequence of iterations, the probability can be shown to
increase monotonically irrespective of the starting state.

This can be achieved in any potential in which the movement of the particle
is periodic, i.e. if the period be p, then if U represent the evolution of the
particle for a time τ , the U† is obtained by evolving the particle for a time
(p− τ) .

This holds for two important potentials - the harmonic oscillator potential

7



and the infinite square well potential where the separation of the eigenfrequen-
cies is by multiples of the lowest eigenfrequency.

For any s state, the sequence of operations drives to the specified t state.

To move particle from  s     to t    

alternately apply inverting

potentials at s & t:

st

Fixed point quantum computing

Can make number of repetitions independent of locations of s & t

by using π/3 phase shift potentials instead of inverting potentials

2π/ω0

τ

Figure 4: The scheme shown in the previous figure is designed to move a particle
between two specific points in the larger potential well. This figure shows how
to move it such that it moves between any two arbitrary points, s & t.

2.5 Physical applications of quantum searching - cavity
design

Cavity design has become an important problem after the advent of lasers since
the cavity plays such a critical role in the performance of the laser and this
problem has been well studied (actually even though for concreteness we will talk
in terms of optical cavities, the principle is applicable to any kind of distributed
resonator). There are several ways to analyze and design cavities using either
ray optics or wave optics in the paraxial approximation. In either of these
techniques, the structure is made to satisfy the condition that it reproduce
itself after a round-trip. This condition may be shown to be necessary in a
one-dimensional structure; in higher dimensions (two & three) it is sufficient
but not necessary (e.g. whispering gallery modes), we make use of this degree
of freedom in this paper by presenting a new class of resonators that utilize
transverse variations of the cavity.

Our inetrim report of 2006 describes this in detail, so we will refer the inter-
ested reader to that report for details. After that we carried out simulations of
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Uts=sqrt(Area of target/Area of source image)

target
source image

U

After 0.78/Uts roundtrips, the light will get 

focussed on the target

U-1

Dielectric phase shift

source

Figure 5: By interspersing the U & U† operations with selective phase inversions,
we obtain the amplitude amplification transformation. As this is iterated, the
amplitude in the target state amplifies.

a confocal resonator configuration. This consisted of:

• verifying that a laser pulse that started off from one mirror indeed evolved
as predicted by the amplitude amplification framework.

• The eigenvectors of the system were indeed combinations of |s〉 and U† |t〉 .

• If the phase inversions were replaced by π/3 phase shifts, then a pulse that
started out at the phase-shift position at one mirror got monotonically
focussed at the other mirror. Note that by monotonically we mean that
the more the iterations the system is designed with, the more accurately
it will focus at the target mirror. The systems that would have to be
designed with different number of bounces will be quite different as the
phase shifts in each bounce will be different.

Note that as expected by an eigenvector analysis of quantum search for the
1 in 4 problem, the two eigenvectors are π/4 displaced from the base states.

2.6 Multiparty scheduling

A natural application area where quantum computing might be expected to give
an advantage is the field of distributed computing since it has been known since
the time of Einstein that quantum mechanics leads to non-local paradoxical
effects (physicists sometimes call this "spooky action at a distance").

Spatial searching is the problem where there are N parties that are phys-
ically separated in space and the problem is to locate the party that has a
1. Through a series of local operations that consist of selective inversions and
neighbor to neighbor communications, Aaronson’s spatial search paper showed

9
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Confocal Resonator Simulations
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No. of sample points = 45
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Pattern at right mirrorPattern at left mirror

Figure 6: The technique described in this report can be used to tailor the modes
of a confocal resonator.

how to locate the site that has a 1. They showed how to do this when the in-
terconnect structure was a lattice of dimension greater than or equal to 2 with
only

√
N communication. This paper makes use of a similar recursive approach,

though we can do things much more simply, since we do not bother with log
factors and also have the π

3 phase shift algorithm available which was not known
at the time.

In the algorithm of this paper, we set the register into a superposition of
all dates, different elements of the superposition do separate quantum random
walks on the same graph - the net effect of which is to invert the phase of the
dates that are satisfactory to all parties.

This is alternated with an inversion about average which increases the am-
plitude in these inverted states.

10



Pulsed laser cavity design using 

fixed point searching
• Replacing phase inversions 

by π/3 phase shifts leads to 

monotonic convergence.

• In confocal resonator use 

selective phase shifts at each 

mirror to obtain focused 

pulse at output.

• Simulation of structure with 

relative aperture (a2/Lλ=10); 

dielectric spots on each 

mirror of about 4% of area.

Rs

U

U-1
Rt

77%     (61%)27

51%     (47%)9

25%     (27%)3

11%1

Fraction of energy

in output spot

No. of 

bounces (b)

Theoretically expected value (1-0.89b)

Figure 7: The fixed point technique of quantum search naturally leads to a
scheme for focussing a pulse to a target location in the output mirror.

2.6.1 The problem

The two-party scheduling problem is the following: Alice & Bob are two parties
that are physically separated. Each has a well defined appointment schedule,
the problem is to find a time slot when each of them is available. This is clearly
equivalent to the problem of finding a common 1 in two remotely located N
bit strings. Classically, they need at least O(N) bits of communication. It
was somewhat of a breakthrough when it was shown that quantum mechani-

cally it could be achieved in only O
(√

N
)
qubits of communication by using

a distributed quantum search (BCW). This was the first example of an impor-
tant communication complexity problem where quantum communication gave a
significant speedup. This was subsequently proved to be optimal by Rasbarov.

This paper solves the problem of multi-party scheduling, i.e. when multiple
(say n) remotely located parties have to agree on a mutually available date out
of N possible dates. The obvious quantum algorithm is to extend the BCW algo-
rithm so that at each step a date is considered satisfied if all parties are satisfied.

This will take O
(√

N
)
iterations but each step will require O(n) communica-

tion, the following algorithm reduces the communication to O
(√

Nn
)
.

11



2nd, 3rd & 4th states are marked 

all 4 states are marked

It IAA

IAAIt

It

It

ItIAA

IAA It

Figure 8: In a 4-state system, there are either 3 marked states or all 4 marked
states. The sequence of 3 selective inversions of marked states (It) and two
inversion about average transformations (IAA) will invert the amplitude only
in the case of all 4 marked states.

2.6.2 Outline of approach

The following section illustrates the scheme of the algorithm in step-by-step
detail. Although, the amount of communication required in this case is not
significantly better than other quantum algorithms, the asymptotic scaling is
much better as described in the following sections.

The algorithm of this section makes use of the following feature of a four-
state system. If a function evaluates to 1 either on three of the four states and 0
on the fourth, or 1 on all four of the states, then an alternating sequence of three
selective inversions and two inversions about average operations will invert the
phase of a uniform superposition in the case the function evaluates to zero in
all four states, in case the function evaluated to 1 only on three states, it leaves
the uniform superposition unchanged.

Figure 7 illustrates the approach of this algorithm on a structured problem
where there are four parties, either three or all four are satisfied with a particular
date, furthermore there are eight possible dates and all the parties are satisfied
on two of these dates. Start with two registers, the first is initialized to a
superposition of all dates and the second to a superposition of all parties, i.e.
the initial state is (|A〉+|B〉+|C〉+|D〉)⊗(|1〉+|2〉+|3〉+|4〉+|5〉+|6〉+|7〉+|8〉)
(we ignore the normalization constant).

The date register is next sent to the party indicated by the party register.
This party, if it is satisfied with that date, inverts the phase and sends it back.

12



Initial state – (|A>+|B>+|C>+|D>) 

⊗⊗⊗⊗ (|1>+|2>+|3>+|4>+|5>+|6>+|7>+|8>)

Send second register to party indicated 
in 1st register, if �, invert and return.

Do Inversion about average on reg. 1.
������D

�������C

������B

�������A

8th7th6th5th4th3rd2nd1st

-1-2-2-1D

-1-2-1C

-1-2-1-2B

-1-2-1A

8th7th6th5th4th3rd2nd1st

Send second register to party indicated 
in 1st register, if �, invert and return.

Do Inversion about average on reg. 1.

Send second register to party indicated 
in 1st register, if �, invert and return.

Do Inversion about average on reg. 1.

Superposition driven to state with 1st register  fixed but sign of second register 

inverted if all satisfied. 

(|A>+|B>+|C>+|D>) ⊗⊗⊗⊗(|1>-|2>+|3>+|4>+|5>+|6>+|7>-|8>)

Do Inversion about average on second register.               2(|2>+|8>)

•NEEDS ONLY 6 log2N COMMUNICATION  

Figure 9: This example illustrates the scheme of the algorithm. In three round-
trips of the register S one can find a suitable slot.

13



The superposition becomes:

(−|A〉+ |B〉 − |C〉 − |D〉)⊗ |1〉
+(− |A〉 − |B〉 − |C〉 − |D〉)⊗ |2〉
+(− |A〉 − |B〉 − |C〉+ |D〉)⊗ |3〉
+(− |A〉+ |B〉 − |C〉 − |D〉)⊗ |4〉
+(− |A〉 − |B〉 − |C〉+ |D〉)⊗ |5〉
+(|A〉 − |B〉 − |C〉 − |D〉)⊗ |6〉
+(− |A〉 − |B〉+ |C〉 − |D〉)⊗ |7〉
+(− |A〉 − |B〉 − |C〉 − |D〉)⊗ |8〉

An inversion about mean on the first register drives it into the states which are
not satisfied on that particular date - except in the case when all parties are
satisfied.

−2 |B〉 ⊗ |1〉+ (− |A〉 − |B〉 − |C〉 − |D〉)⊗ |2〉 − 2 |D〉)⊗ |3〉 − 2 |B〉 ⊗ |4〉
−2 |D〉 ⊗ |5〉 − 2 |A〉 ⊗ |6〉 − 2 |C〉 ⊗ |7〉+ (−|A〉 − |B〉 − |C〉 − |D〉)⊗ |8〉

Next we repeat this sequence of selective inversions and inversions about
mean one more time and after that do a final selective inversion. As indicated
in the beginning of this section, the net effect of the three selective inversions
and two inversion about averages is to invert the phase if all parties are satisfied.
The superposition may now be written in the form (|A〉 + |B〉 + |C〉 + |D〉) ⊗
(|1〉 − |2〉+ |3〉+ |4〉+ |5〉+ |6〉+ |7〉 − |8〉).

A single inversion about average on the date register will drive it into dates
corresponding to states where all parties are satisfied.

It has recently been realized that this is equivalent to an AND of ORs which
can be carried out by standard quantum searching. The problem is equivalent
to an OR of n ANDs, each of which is over N variables. Using the basic search

algorithm recursively, you can do this in O
(√

Nn
)

queries in the black-box

model. (Eliminating a log factor involves the recursive algorithm due to Hoyer,
Mosca and de Wolf from ICALP 2003.)

This realization has prompted us to look for further novel applications of our
framework. One application is when we need to find the best schedule, which
may not be the perfect schedule. In this situation in each iteration of the inner
loop, we do a counting (this can be carried out by the Valiant-Vazirani algorithm
which consists of sampling followed by successive bisection of the graph) and
in the outer loop instead of an AND we do a minimum using the Hoyer-Durr
adaptation of the quantum search algorithm. This cannot be implemented by
a simple AND-OR circuit.

2.7 Superlinear Amplitude Amplification 1-

14



Quantum search/amplitude amplification algorithms are designed to be able to
amplify the amplitude in the target state linearly with the number of operations.
Since the probability is the square of the amplitude, this results in the success
probability rising quadratically with the number of operations. This section
presents a new kind of quantum search algorithm in which the amplitude of the
target state increases quadratically with the number of operations. However,
the domain of applications of this is much more limited than standard amplitude
amplification.

Quantum searching was invented to speed up the searching process in data-
bases. It was realized by Hoyer et al [[?]]and independently by me [[?]] that this
searching was a special case of amplitude amplification whereby the amplitude
in a target state could be amplified linearly with the number of operations. This
realization considerably increased the power of the algorithm, no longer was it
limited to database searching but was applicable to a host of physics and com-
puter science problems. In fact it gave a square-root speedup for almost any
classical probabilistic algorithm.

The idea behind this speedup was realized later on to be a two dimensional
rotation through which the state-vector got driven from the source to a target
state through a sequence of small rotations in the two dimensional space defined
by the source and the target state.

This is easily seen by considering the basic transformation: −UIsU−1ItU
say V. Then if we calculate Vts, by definition of the It & Is operations, it easily
follows that

Vts = (−UIsU−1ItU)ts = 3Uts − 4 |Uts|2 ≈ 3Uts (4a)

Note that this is true for any unitary U. It stays true if we replace U by V
which yields:

(−V IsV −1ItV )ts = 3Vts
Substituting for V as −UIsU−1ItU in (5) and Vts from (4a), it follows that:

(−UIsU−1ItUIsU−1ItUIsU−1ItUIsU−1ItU)ts ≈ 9Uts

Similarly by recursing multiple times, we can prove the transformation:
U(−IsU−1ItU)pts ≈ (2p+ 1)Uts to be true for large p.

2.7.1 Quadratic Amplitude Amplification

This paper gives a new kind of amplitude amplification in which the amplitude
in the target grows ;quadratically with the number of iterations. Instead of
choosing the basic transformation to be V=− UIsU−1ItU, we choose V to be
−U−1ItIsU. It follows by using the definitions of Is & It, that

Vts =
(
−U−1ItIsU

)
ts
= 2UssU

∗
ts + 2U

∗
ttUst (5)

1This topic is discussed in somewhat greater detail since it is based on a very recent result,
one that most readers may not be familiar with.
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In case Uss ≈ U∗tt and Ust ≈ U∗ts, then Vts ≈ 4UssUts.Unlike the recursion equa-
tion of the previous transformation which only depended on Uts, this equation
depends on both Utt and Uss and even Ust. So we need to investigate how Utt
and Uss vary in successive recursions.

Consider Vss. Again assuming Ust ≈ U∗ts and Uss ≈ U∗tt

Vss =
(
−U−1ItIsU

)
ss
= −1 + 2 |Uss|2 − 2 |Uts|2

Note that if we denote Uss = (1− δ), and Vss by (1− γ) assuming all terms to

be real and neglecting 2 |Uts|2 on the RHS, the above equation may be written
as:

γ ≈ 4δ

Therefore Vss stays close to 1 for approximately
ln 1

δ

ln 4 recursions. In i recur-
sions, provided Utt ≈ 1, Uts rises by a factor of approximately 4i; therefore in
ln 1

δ

ln 4 recursions Uts rises by approximately a factor of 1
δ
. The number of queries

is approximately 2

(
ln

1

δ

ln 4

)

which is 1√
δ
, as expected the amplification of Uts is

quadratic in the region when Uss is approximately 1.

2.7.2 Example - U is the Inversion about Average Operation

Consider the situation when s, the starting state is an arbitrary basis state and
U is the inversion about average transformation. Then, assuming there to be N
states to be searched, Uss is −1+ 2

N
and Uts is

2
N
. Then analyzing the sequence

of operations for a few steps-

• U =WI0W

• −U−1ItIsU = −WI0W︸ ︷︷ ︸ ItIsWI0W︸ ︷︷ ︸ =W I0 W (ItIs) W I0 W

•

U−1ItIsU IsIt U
−1ItIsU = WI0W︸ ︷︷ ︸ ItIsWI0W︸ ︷︷ ︸ IsIt WI0W︸ ︷︷ ︸ ItIsWI0W︸ ︷︷ ︸

= · · ·W I0 W (ItIs) W I0 W (ItIs) W I0 W(6)

Looks something like the search algorithm, which is:

= · · ·W It W It W Is W It W Is W

However, any similarity is superficial, as we discuss in the following section,
this algorithm is not a rotation of the state vector in two-dimensional Hilbert
space.

Nevertheless, the dynamics of the algorithm are fairly simple to understand
and analyze iteratively: The state just before an inversion about average is
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•IAA

•|s>

•It Is

•|t>

•IAA

•It Is
•IAA

Figure 10: This describes two iterations of the new quantum search algorithm.
As described above, the U transform is the Inversion about Average operation
(IAA).

described by 3 parameters, the amplitudes in the target state, source state and
that in the other states.

The evolution is obtained by the following equations (A(t) denotes the av-
erage amplitude over all states):

.∆A(t) = 2
S(t)

N
− 2T (t)

N
∆S(t) = −2A(t)
∆T (t) = 2A(t)

Going to the continuous limit and solving this system of differential equations

gives the amplitude in the target state as 12− 1
2 cos

(
2
√
2t√
N

)
. Therefore in t = π

√
N

2
√
2

iterations, the amplitude in the target state becomes unity.

2.7.3 Observations

The number of iterations required for searching with certainty is
√
2 times

more than required by the search algorithm.

The variation of the amplitude in the target state is 1
2 − 1

2 cos
(
2
√
2t√
N

)
. in

the initial stages (when t is close to 0), the amplitude varies as 2t2

N
As

17



expected, the rate of increase is quadratic. However, once the probability
in the target state become significant (also affecting Uss), the quadratic
nature of the increase is destroyed.

The algorithm of this paper may be useful in applications where the basic Uts
that needs to be amplified is small (in the above example where the U
transform was the inversion about average, Uts was only 2

N
- whereas in

the search algorithm it is about 1√
N
.

It is possible that there would exist applications where a few applications of
this algorithm provided the driving transform for amplitude amplifica-
tion algorithms. That way, we would get the quadratic speedup plus the
flexibility of the amplitude amplification algorithms.

2.7.4 This is not the search algorithm

One might be tempted to conclude that the above algorithm was a variant of the
search algorithm because, overall, it gave a square-root speedup; also it consists
of similar sequences of unitary transformations (6). However, that is not the
case.

The chief characteristic of the search algorithm and all its variants (ampli-
tude amplification algorithms) was a rotation of the state vector in appropriately
defined two dimensional space. The algorithm of this paper needs more than
two dimensions to operate in. To see this consider the basic recursion equation
(5) used to develop the algorithm: Vts =

(
−U−1ItIsU

)
ts
= 2UssU∗ts + 2U

∗
ttUst.

Given large Uss & Utt and Ust ≈ U∗ts, we had argued that Vts was amplified sig-
nificantly in each recursion. In order to satisfy this condition needs more than
two dimensions. This is because if there were only two dimensions it would fol-
low from unitarity of U that 2UssU

∗
ts+2U

∗
ttUst=0 (any two columns of a unitary

matrix are orthogonal) - therefore, additional dimensions are necessary.

2.7.5 Summary of superlinear amplitude amplification

The above algorithm gives a quadratic amplification under certain conditions.
The quadratic amplification offers something new beyond the search algorithm,
even though it is not as universally applicable. To borrow a term from analog
amplifiers: this only has a limited dynamic range - outside of this range it has
to be supplemented by other more robust algorithms.

Just as the amplitude amplification principle, quantum searching and fixed-
point quantum searching, this algorithm provides yet another tool in the quan-
tum algorithm designer’s toolkit. Whereas, amplitude amplification and quan-
tum searching are independently useful to design quantum algorithms, the fixed
point algorithms & the algorithm of this paper may be useful in combination
with other algorithms - fixed point algorithms to improve the robustness and
the algorithm of this paper to increase the amplification in selected ranges.

As described in the Observations section, the algorithm of this paper may
be useful in conjunction with the standard quantum search algorithm. This is
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•Robustness

•X

•Classical search 

•N steps to search N ite

•X
•Quantum searching

•Square-root speedup over classical

•X 

•Quadratic Amplitude Amplification

•Square-root speedup over quantum searching 

•Speedup

Figure 11: Hierarchy of search algorithms - The quantum search algorithm
attained a square-root speedup over classical but the price paid was more sen-
sitivity. The present algorithm provides a square-root speedup over quantum
searching, but it still more sensitive.

somewhat similar in spirit to applications where the search algorithm is com-
bined with a classical algorithm. One such example is the counting algorithm
of [Bra98] where one gets round the cyclical nature of the search algorithm
by making appropriately timed observations (which is the classical algorithm).
The counting algorithm is not usually looked at this way, but in the context
of robustness versus speed, it is insightful to look upon it as a combination of
classical and quantum search algorithms,

2.8 Using incoherent ancillas

We have noticed that a modified quantum search algorithm works almost the
same as the original algorithm if the phase inversion step is replaced by a count-
ing step in which a quantum device counts how many times the system has
passed through the solution state. The advantage with such a structure is that
it does not need to maintain phase matching with the rest of the structure. In
fact, we have found using density matrix calculations that the algorithm still
works even if the counter is not totally coherent.

We also find that this version of the search algorithm, while requiring an
increase in the number of oracle queries (by only a constant factor) is much
more stable with respect to overshooting/undershooting the optimal number of
queries. We are thinking of applications where this observation would give a
decisive advantage over the standard search algorithm.
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Searching with Mixed States

Counter need not be in a pure state.

Pure state
Quantum Computer

p|0><0| + (1-p) |1><1|

Mixed ancilla counter
(as long as p ���� 1/2

computation still works)

f( x )

x x

XOR

Figure 12: The phase inversion module of the quantum search algorithm can be
replaced by a counter. Such a system is much less sensitive to perturbations.

2.9 Incoherent versus coherent qubit interactions: Sub-
space projection as a computational primitive

Performing universal quantum computation is generically equated with the abil-
ity to build up arbitrary unitary transformations on a large number of qubits
out of a set of unitary transformations that act on a small number of qubits
at a time. As such, the primary challenge of building a quantum computer is
most often considered to be finding quantum systems with appropriately con-
trollable Hamiltonians, such that the desired unitary evolution is obtained to
within some small error.

While this standard paradigm certainly enables universal quantum comput-
ing, recent results have shown that it is not necessary that the computation
be built up in such a way. In particular it has been shown that we can of-
ten replace the ‘hard’ parts of a quantum computation (generally the 2 qubit
interaction) by using measurements and appropriately prepared ancilla states.
In particular, Gottesman and Chuang [Got99]showed that teleportation is such
a universal computational primitive. Recently some beautiful ideas for imple-
menting quantum computation by performing measurements on appropriately
prepared ancilla states have been presented [Rau01, Nie01]; these latter schemes
are remarkable in that they require no coherent (unitary) evolution during the
computation at all.

By coupling an idea of Paul Kwiat’s with an idea of ours (which originated
in the work on quantum searching a classical database, Section 2.3), we have
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Figure 13: It is possible to use an absorbing process to achieve quantum com-
putation using interaction-free measurements.

shown that a two outcome projective measurement

P1 = |0〉〈0|+ |1〉〈1|, P2 = I − |0〉〈0|+ |1〉〈1| =
∞∑

n=2

|n〉〈n|

on a single harmonic oscillator mode can act as quantum computational primi-
tive, which, along with easily implemented single qubit unitary transformations,
enables us to perform universal quantum computation. In contrast with the
aforementioned schemes, we need make no use of prepared ancilla states. In-
stead we use the quantum zeno effect in such a way that a series of measurements
approximate a useful unitary evolution.

As an abstract mathematical result this is perhaps not particularly interest-
ing. However our scheme allows for the P2 outcome to be destructive - that is,
it absorbs the quanta involved. This is somewhat surprising, since one normally
expects that such processes will result in loss of the quantum systems which are
being used in the computation.

Fig. 13 is a schematic showing how to use an interaction free measurement
to turn the incoherent projective measurement P1,P2 into a coherent gate. The
black box labelled A consists of a balanced Mach-Zender interferometer, with a
measurement of P1,P2 in both of its arms. (If two photons are incident on a
beamsplitter then the output state is |2, 0〉+|0, 2〉 . Thus a measurement of P1,P2
in both outputs will certainly give the absorptive outcome P2 in one output. If
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one photon, or the vacuum, is initially present then the non-destructive outcome
P1will occur in each arm. In effect the box A absorbs the target photon if
and only if the control photon is present.) The target photon enters at the
switchable mirror M1. It passes through a weakly reflecting beam splitter, of
reflectivity sin2 θ = π/N . If the control photon is present, then it collapses onto
the path which doesn’t contain A; if the control photon is not present then the
target proceeds through the interferometer coherently. The photons are cycled
N times; by choosing N large enough we can make the probability of failure as
small as we wish. It can be shown that this process implements the following
two qubit gate:






1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




 .

This gate coupled with single qubit transformations suffices for quantum com-
puting.

Thus our results show that absorptive nonlinear processes can be used to
perform useful quantum computation.. As a simple example of why this can
be of practical significance, let us think for the moment in terms of photonic
qubits. The interaction strength between two photons is very weak (of order
1

1378 ), unless we make use of some nonlinear media. Even with such a medium
however, if we limit our considerations to non-resonant (dispersive) interactions
then they are still not particularly strong. The primary reason we would limit
ourselves to non-resonant interactions however, is simply that resonant ones
(which are orders of magnitude stronger) are going to cause absorptive loss of
the photons with which we are trying to compute. However using our scheme,
although the interaction is incoherent, they are not lost to the computation.

Although phrased in terms of photons, our ideas apply quite generally. As
such, we are currently working with our experimentalist colleagues at Bell Labs
to think of systems in which strong nonlinear effects are observed at the single
quantum level. Almost any system with a strong nonlinearity will suffice.

This ideal led to the (now) well known scheme by Terry Rudolph to carry
out robust error correction using a cluster architecture.

2.10 Extended party quantum information processing

The field of quantum information theory can be broadly segregated into two
areas of study: (i) local information processing (e.g. quantum computation
algorithms) and (ii) extended quantum information processing (e.g. key distri-
bution, two-party protocols, data hiding, communication complexity, entangle-
ment properties). As in classical information theory, results in one area often
yield insights into the other; this forms much of the motivation for studying clas-
sical communication complexity for example. In the quantum world the link is,
in some sense, much stronger: the power of quantum mechanics for both local
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and extended information processing lies ultimately in the tensor product struc-
ture of the theory, a structure which it is most natural to probe by considering
extended processes. When considering parties engaged in extended quantum in-
formation processing, we need to initially specify the resources available to the
parties, such as the amount of shared prior entanglement, the characteristics
of any classical or quantum channels and so on. A primary part of the study
of extended quantum information processing involves examining the achievable
tasks under various restrictions in the available resources.

2.10.1 Quantum Communication Complexity

Classical communication and computation have been intricately linked since
the time of Shannon. It is well known that appropriate coding can greatly
facilitate the transmission of data. Similarly, distributing computation among
multiple computers can expedite the solution of certain problems for which
the communication needs do not dominate. A similar situation prevails in the
quantum world. Quantum teleportation and quantum cryptography all make
use of the same concepts and framework as quantum computation. Indeed the
quantum technique that gives the best known improvement in communication
complexity as compared to classical, consists of an application of the quantum
search algorithm in a distributed setting to solve the intersection problem.

I recently discovered an improved algorithm for the intersection problem.
This problem consists of finding a common 1 in two remotely located N bit
strings. Denote the number of 1s in the string with the fewer 1s by εN . Classi-
cally, it needs at least Ω(εN log2N) bits of communication to find the common
1. The best known quantum algorithm (also based on quantum searching) would
require O(

√
N log2N) qubits of communication.My algorithm improves this to

O(
√
εN log2N) qubits.

For the last several months, Terry Rudolph and I have been working intensely
in the area of quantum communication complexity. We have been trying to see
what classical computations can be carried out in a distributed setting using
entanglement. In particular our studies have focused on understanding the (en-
tanglement assisted) communication complexity for arbitrary functions, rather
than focussing on specific examples of functions as previous research has done.

Our investigations along these lines have led us into considering a generaliza-
tion of a problem which as received much attention already, namely the minimal
communication requirements (quantum or classical) under which a given entan-
gled state can be transformed into another given state. The generalization we
have been investigating, and hope to investigate further, arises when Alice and
Bob hold one a set of entangled states (but they don’t know which) and they
wish to apply some transformation to a different set of entangled states.

To see how this question arises, assume that Alice and Bob initially share
a resource of entangled states. They also each have some data, xA or xB and
wish to compute f( xA, xB). If they each perform some local operations which
depend on their input data, we see that they now hold one of a set of possible
entangled states - although they do not know which one. Their goal is to perform
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operations, with as little classical communication as possible, which result in a
different entangled state. This final entangled state we generally envisage being
such that one of the parties can tell, from local measurements, what the output
f(xA, xB) is.

We have begun our investigation into this general question, by looking at the
case where Alice and Bob share either the entangled state |ψ0〉 or |ψ1〉. They
wish to effect the transformation

|ψ0〉 → |φ0〉,
|ψ1〉 → |φ1〉,

utilizing as little classical communication as possible. It is well known that if
there were only a single state |ψ〉 which they wished to transform into |φ〉, then
they can do so with no communication if the two states have the same amount
of entanglement. In our only slightly more complex generalization however, no
such simple rules are evident. For example, there exists pairs of initial states
|ψ0〉, |ψ1〉 which are orthogonal and have the same amount of entanglement,
and corresponding pairs |φ0〉, |φ1〉 of final states which are also orthogonal and
which have the same entanglement as the initial states, for which the desired
transformation is not (deterministically) possible with no communication.

We have also made the following rather curious observation, which is a special
case of the above but for which we are yet to find a concrete application. Imagine
that Alice and Bob have an unlimited resource of EPR pairs, and that they use
the states |0L〉 = |00〉+ |11〉 (|1L〉 = |00〉 − |11〉) to encode a logical zero (one).
Note that each of them can set the value of any qubit in the logical basis by a
local operation, no communication is required. We have found that on a series
of N such encoded logical qubits, Alice and Bob can perform an inversion about
average operation (in the logical basis), without any communication. They do
so by performing a phase inversion on the state with all 0’s in the local basis
(either party can perform this phase inversion. This result seems to indicate that
some form of extended party quantum searching might be possible, we spent
considerable time trying to work out the specific communication requirements
for this, unfortunately our scheme for quantum searching using entangled states

turned out no better than the well known O
(√

N
)
time results for scheduling.

2.11 Quantum searching for classical objects

We believe that some of the earliest uses of results from quantum information
processing will be in small but useful applications of quantum effects within a
classical computer. The quantum search algorithm was originally phrased in
terms of searching an unsorted database for a marked item. Clearly such a
database would have to be a “specially constructed quantum” database, and
could not be a “regular classical” database. As such the search algorithm is
usually thought in terms of querying a (specially constructed) quantum oracle.
We have recently shown how to perform a quantum search for a classical object,
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Quantum Searching a Classical Database

Without Superposition
A

B

C

D

With one query, expected probability of successful identification:
Psucc = (1/4) * 1 + (3/4) * (1/3) = 1/2

With Superposition

Single 
Photon

Inversion about

average

Single 

Photon

Opaque

Object

Psucc = 1/4 *1/4 + 3/4 * (�3/2)2 = 5/8 > 1/2

Figure 14: A scheme analogous to quantum search may be used with advantage
to search a classical database.

specifically for a classical object which performs no coherent evolution on the
quantum computer being used for the search.

The simplest example of such a hybrid quantum/classical process can be
understood by considering the case where an opaque object is used to mark
one of N different objects, and we are limited to only a single query. Classi-
cally the probability of correctly identifying the marked item is 1/N. However,
using appropriate beamsplitters we can place a photon in a superposition of
paths corresponding to all N items. In this way the photon queries all items
simultaneously. Another array of beamsplitters can then be used to perform
an inversion about average operation on the photon paths - it is not difficult
to show that our probability of success is now boosted to about 4/N in the
limit of large N. The following figure gives a detailed calculation of the success
probability after a single query to a 4 item database, here too it gives a constant
factor improvement over the best possible scheme. As mentioned earlier the loss
of the photon due to probing the opaque object limits the success probability.

We have extended this simple one query example, by using interaction free
measurement as a subroutine in the quantum search algorithm. This is nec-
essary, because absorptive loss causes the naive one query procedure discussed
above to become extremely inefficient after several iterations. Interaction free
measurements were invented to answer the question: “Given a bomb which is
so sensitive that a single photon touching it will cause it to explode, is there
some way to detect the presence or absence of the bomb”. It turns out that
using quantum mechanics the answer to this unlikely conundrum is “yes”. The
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mechanism to do so involves the quantum zeno effect, which is used to “mimic”
a unitary evolution on the photon with high probability. In our scheme we use
this “almost unitary” evolution to act as an oracle type subroutine.

In addition to providing a simple example of how non-unitary processes
which approximate unitary ones can be useful in a quantum algorithm, our pro-
cedure requires only one photon regardless of the size of the database, thereby
giving us a scheme which is provably the most energy efficient scheme to search
an arbitrarily large database. Our result can hence be interpreted as showing
how to perform an interaction free measurement with a single photon on an
arbitrarily large number of possible bomb positions simultaneously. The im-
provement we have obtained is only by a constant factor - we hope to improve
this to a square-root factor (the difference from the standard search algorithm
is that there are losses at every step of the classical observation which reduces
the amplitudes in all states that give any meaningful information).

It is almost certain that recent developments in searching will lead to some
improvements in this algorithm, however, during the course of the last few years,
I have not been able to revisit this topic.

3 NP-complete problems

These problems are extremely challenging and researchers in several different
fields have been working on them for several decades. We have been working on
them intensely - the belief is that even if we are not able to construct a poly-
nomial time algorithm, we hope to find uniquely quantum heuristic algorithms,
and we are confident the techniques developed will lead to other spin-offs in our
understanding of the strengths and weaknesses of quantum computing. The
best known example of such a spin-off is the search algorithm itself as discussed
later in this section.

When quantum computing was first being invented, it was hoped that it
would be able to solve NP-complete problems just through the parallelism of
quantum mechanics. Such a scheme would do a brute force search and would
not need to use any of the structure of these problems. These hopes were dashed
in 1994 by the paper by Bennett, Bernstein, Brassard & Vazirani [BBBV], that
proved that the best improvement that such a scheme could provide was a
square-root speedup. Indeed, so far the best algorithm for solving NP-complete
problems is through a brute force search using the quantum search algorithm
which gives a square-root advantage over a classical algorithm; this however, still
requires an exponential amount of time. Based on the [BBBV] result, it is often
said that quantum computing algorithms could not possibly solve NP-complete
problems. However, it should be emphasized that this is only true if we look
at the NP-complete problem as an exhaustive search problem. NP-complete
problems have considerable structure and there well might be other more ad-
vantageous ways of looking at them. The science of quantum computation is
relatively new and there are several unexplored directions. Farhi and cowork-
ers’ recent results on adiabatic evolution were initially suggestive that quantum
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algorithms might indeed offer an advantage [Far02]. Even though that has been
shown to be unlikely to happen, there are other related directions that appear
very promising. We are exploring a number of different algorithms that make
use of the power of quantum mechanics to take advantage of the structured
nature of these problems.

We plan to investigate how efficiently we can create superpositions that
provide information about the solution of computer science problems more ef-
fectively than classical probabilistic algorithms. The quantum search algorithm
has been shown to be applicable to the synthesis of general superpositions (and
hence classical distributions), however it only gives a square-root advantage over
classical methods. It remains to be seen what kinds of advantage it gives for
structured superpositions. To give an indication of the breadth of possibilities,
we mention some approaches we have investigated:

1. One of the issues with NP-complete problems is local optima. As a result,
local search algorithms that do a step-by-step improvement, get stuck in
local optima and then there is no way of knowing how to proceed. As
physicists well know, a feature of quantum mechanical systems is that of
tunneling. This might provide systems that can elegantly get out of local
optima. Incidentally, when I first designed the quantum search algorithm,
I was trying to design a quantum algorithm that had the tunneling abil-
ity. Before I could design such a system, I found the search algorithm that
derived its speed in a different way.
Even though we have not yet come up with an local search algorithm for
NP-complete problems, this is the approach that appears most promising.
Classical local search algorithms are perhaps the most powerful classical
algorithms; quantum local search is just starting to get off the ground -
e.g. spatial searching. I have my own approach which consists of follow-
ing the trajectory of a diffusing particle in a confined region. The region
can have either reflecting or absorbing boundaries. I have known how to
evolve the particle in the presence of absorbing boundaries (provided, of
course, the region is convex). Unfortunately this does not conserve the
number of particles so one has to design the potential so that there is very
high potentials in the region of this absorbing boundary.
Other ways of getting around this problem are (i) to use binary systems
(with the sum of variables as the problem variable) (ii) use Green’s the-
orem to evolve the function (this conserves the integral of the product of
the two functions).

2. It is well known how to classically sample according to log-concave distri-
butions. Unfortunately, it is not known how to specify an NP-complete
problem as that of sampling a log-concave distribution. We have been
able to represent these problems as that of sampling slightly log-convex
distributions, i.e. distributions that are slightly non-log-concave at certain
well-defined points in certain well defined directions - everywhere else they
are log-concave.
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It is clear that we can synthesize a quantum mechanical superposition
that leads to a log-concave probability distribution by using a variant of
the classical algorithm. However, this would be an incoherent distribution
and not amenable to further processing on a quantum computer. We have
recently discovered a way of synthesizing a quantum superposition corre-
sponding to log-concave distributions that has well defined phases in each
state[Gro02c]. Also, we have been able to prove that the magnitudes of
the Fourier Transforms of superpositions that correspond to NP-complete
problems are log-concave. All that remains is to estimate the phase of an
arbitrarily specified point of this superposition. If we can somehow cal-
culate this, we can rotate the phase of each point appropriately and then
Fourier Transform back to get the original superposition. Unfortunately,
the Fourier Transform of coupled functions is not very amenable to ana-
lytical processing such as that we require to prove log-concavity.
After considerable research on this topic, (including Hilbert & Hankel
transforms), we are inclined to think that the local search approach is
superior. The one opening we see in this direction is to use a min-cut type
approach to represent the problem (the advantage is that only the one
constraint demanding the sum of the n variables is zero is convex, the rest
are all of the same sign). Now when we Fourier transform, all but the one
constraint is log-concave and thus amenable to randomized int4egration,
it is the one constraint that we have to struggling with.

3. We have been able to represent distributions corresponding to NP-complete
problems as products of two simple distributions (in the same variables).
Classically, it is not easy to create products of distributions, even though
the individual distributions each might be easy to create. Quantum me-
chanically, one can create the sum of the two superpositions corresponding
to the two distributions, then the resulting distribution obtained will have
a term corresponding to the product of the two superpositions due to in-
terference effects, i.e. if we think of the superposition: f1 + f2, then the
resulting probability distribution will be: |f1|2 + |f2|2 + 2� (f∗1 f2) . The
last term can be designed to give the solution to the NP-complete prob-
lem. Unfortunately, this is usually swamped by the first two terms - we
spent some time trying to amplify the cross term but this leads to an
exponential number of operations. One example is as follows - if we can
somehow synthesize the density matrix |f1〉 〈f2|+ |f2〉 〈f1| (which is sym-
metric and thus has real eigenvalues), then we can get the desired product
state. Unfortunately, the eigenvalues can become negative in general. To
ensure positivity of the eigenvalues, one has to add the terms proportional
to |f1〉 〈f1| + |f2〉 〈f2| - this in essence takes us back to the original pure
state situation discussed earlier.

4. In algorithm design, one of the strong points of quantum algorithms is
the ease of transforming a superposition into its Fourier Transform, the
difficult thing is to convolve together two quantum superpositions. If we
can do both the Fourier Transform and convolution, then it is possible to
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solve NP-complete problems. Convolving together two classical probabilis-
tic distributions is trivially easy. We have investigated ways of convolving
two superpositions, however, after initially promising results, this one did
not work out because it required a condition on the log convexity. This is
the way the argument goes - assume f1(x) and f2(x) are both log-concave
in magnitude, then we can clearly create the superposition f1(x)f2(y−x),
with the x variable as a quantum mechanical variable. The superposi-
tion is log-concave for each value of x and hence x can be uncomputed -
unfortunately due to the normalization factors, we will be left with the

superposition
∫
x
f1(x)f2(y−x)

∫
x
|f1(x)|2|f2(y−x)|2

|∫x f1(x)f2(y−x)|2
, which is more complicated

than the simple convolution of the superpositions

5. It is possible to solve Schrodinger’s Equation, even in non-relativistic quan-
tum mechanics, for certain complicated potentials using supersymmetry .
There are well known examples for structures with local optima. We plan
to investigate these from an algorithm perspective. For example, superym-
metric Hamiltonians often allow an analytic estimate of the eigenvalue gap
between the ground state and first excited state. This may allow us to
obtain an analytic handle on certain types of adiabatic quantum computa-
tion algorithms.[Far02].We even investigated systems with a single bound
state, since this is guaranteed to be separated from the unbound state by
a finite amount, the gap can be easily controlled, however we could not
attain comparable results for multi-dimensional systems.

The most promising approach we tried was to examine a system with
a single bound state (in multiple dimensions, even fairly wide potentials
have only a few bound states) - for example consider a potential function
that is the product of n one dimensional wells, each with a single bound
state. Now if we consider perturbing this product by a quadratic potential
function of the form

∑
i,j cijxixj, we can arrange for this ground state to

be concentrated in the region of the minimum potential function. Un-
fortunately introducing a quadratic potential function means introducing
multiple bound states too.

6. At the moment the approach that looks promising is the followingt - im-
plementing R0 by interaction with unperturbed states. The idea is to have
many instances of the superposition and in each instance randomly choose
the coordinate to be operated on. Then since the average of all superpo-
sitions is very close to the 0 state, this is the one to be inverted (inverting
the average is easy as everyone familiar with the search algorithm knows!)

Progress in Topological Quantum Computing
The task of building a scalable quantum computer remains one of the most

compelling and challenging problems of our time. While many approaches have
been proposed for reaching this goal, and while much has been achieved exper-
imentally, there still remains an enormous gap between our current status and
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the final goal. It appears that nature has not been very generous in allowing us
to suppress decoherence in any easy way.

Recently, one particular approach has arisen that proposes to beat the deco-
herence problem in a very different way than all other schemes. This approach,
known as topological quantum computation relies on exotic states of matter that
in essence have quantum error protection built into their ground states (For
a very thorough introduction and review of this idea, see [1]). While experi-
mentally this approach lags behind other schemes, having not even achieved a
single qubit, the long term promise of built-in protection from decoherence is
appealing enough to have attracted substantial interest.

Over the past few years the group at Bell Labs has been very focused on
making progress on topological quantum computing both experimentally and
theoretically. Experimentally, the drive to achieve topological quantum com-
putation is beginning with a more detailed study of certain fractional quantum
Hall states Ð the only known states of matter that are believed to be capa-
ble of topological computation. Bell Labs has led the world in the study of
fractional quantum Hall physics for over two decades, and still dominates the
field. Much of this dominance is due to ourunique ability to grow ultra-pure
Gallium-Arsenide semiconductors that are required for producing the fractional
quantum Hall states. Indeed, every experimental group in the world that col-
laborates with Bell.

On the theoretical front, Dr. Simon has been studying topological algo-
rithms. In topological quantum computation, a universal quantum computa-
tion is performed by moving particles around each other in complex patterns to
form space-time braids (See [1]). The interesting algorithmic problem is then
to figure out what patterns (or what braids) perform which computations [2-3]

[1]NonAbelian Anyons and Topological Quantum Computation, C. Nayak,
S. H. Simon, A. Stern, M. Freedman, and S. DasSarma, to be published in Rev.
Mod. Phys; arXiv:0707.1889

[2] Braid Topologies for Quantum Computation, N. E. Bonesteel, L. Hor-
mozi, G. Zikos, and S. H. Simon, Phys. Rev. Lett. 95, 140503, (2005).

[3] Topological Quantum Computing with Only One Mobile Quasiparticle,
S. H. Simon, N. E. Bonesteel, M. H. Freedman, N. Petrovic, and L. Hormozi,
Phys. Rev. Lett. 96, 070503 (2006).

[4] Topological quantum compiling, L. Hormozi, G. Zikos, N. E. Bonesteel,
and S. H. Simon, Phys. Rev. B 75, 165310 (2007).

4 Conclusion

Quantum search was a surprising result because it gave an O(
√
(N)) step algo-

rithm to find a single marked item in an unsorted database of size N . It took
some time for the scientific community to absorb this result. There are N items,
so one would expect that it should need N steps to search them since . However,
this is only true if one thinks classically, quantum systems are not subject to
these limitations, they can be in multiple states and examine multiple items at
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the same time. There is thus no clear limit as to how fast these can search the
database.

The second surprising fact about this algorithm was that soon after it was
discovered it was proved to be optimal. This was surprising because I had made
no particular attempts to optimize it. As a consequence of this optimality proof,
most of the research that has been done on this is to increase the scope of its
applicability through amplitude amplification.

The third surprising result was that even after more than twelve years of
intense research (it is one of the most researched topics in the field of quan-
tum computing), it continues to yield fundamentally new results). This report
describes some of these results.

5 Personnel

1. Lov K. Grover :

He was the main researcher in this program. As mentioned in the text of
this proposal, he has pioneered some of the ground-breaking recent con-
cepts in quantum computation. In recognition of his achievements, Bell
Labs promoted him to a Distinguished Member of Technical Staff. He has
been at Bell Labs, Murray Hill since 1994. Prior to that he was a fac-
ulty member in the School of Electrical Engineering at Cornell University.
He got his Ph.D. in Electrical Engineering and an M.S. in Physics from
Stanford University in 1984 and an M.S. in Electrical Engineering from
Caltech in 1982. He got his B. Tech. in Electrical Engineering from IIT
(Indian Institute of Technology, New Delhi, India) in 1981.

2. Terry Rudolph:

Dr. Rudolph is a post-doctoral fellow at Bell Labs. He is a theoretician
most recently from the Institute for Experimental Physics at the Univer-
sity of Vienna. Prior to that he was a faculty member at the University
of Toronto. Dr. Rudolph completed his PhD in 1998 (at age 24), in the
field of theoretical quantum optics. He still collaborates intensively with
members of the experimental quantum optics community on problems as-
sociated to practical implementations of quantum computing. Within the
field of quantum information, Dr. Rudolph has authored over ten papers,
and is particularly known for his fundamental work on two-party quan-
tum cryptographic protocols. In his keynote address at the Workshop on
Quantum Computing in Huangshan, China in September 2001, Charlie
Bennett prominently referred to him as the world’s leading expert on di-
rection finding. He has recently accepted a faculty position at Imperial
College, London, UK.

3. Steven H. Simon

He is the director of Quantum Information and Semiconductor Physics
at Alcatel-Lucent Bell Labs. He is a theoretician with broad expertise
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in condensed matter physics, quantum Hall physics, information theory,
communications theory, and quantum computation. His recent research
has focused on topological quantum computation. He has been at Bell
Labs since 1997 and was elevated to department director in 2000. Since
then he has managed research efforts in a broad range of fields ranging
from biological computation to complex systems to quantum information.
Prior to being at Bell Labs he was a postdoctoral researcher at MIT. He
obtained a Ph.D. at Harvard in 1995 and a B.Sc. at Brown Univerisity
in 1989. He holds five patents and is a fellow of the American Physical
Society.

4. Tathagat Tulsi

Tathagat Avatar Tulsi is is most well known as a child prodigy and holder
of Guinness World Records. He completed high school at the age of nine,
earned a B.Sc. at the age of ten and a M.Sc. at the age of twelve.

He is just completing his Ph.D. at Indian Institute of Science, Bangalore,
India in the field of quantum computing in which he has done some truly
outstanding work. He is mostly known as a child prodigy, unfortunately
his technical work which is of an equally high caliber is nowhere as well
known as it deserves to be. His invention of the fixed-point quantum search
algorithm after listening to my talk at a workshop in IIT Kharagpur, is
one of the most intriguing, though not widely known stories, in the field.

I had discovered the π/3 phase shift algorithm after almost 10 years of fid-
dling around with the original search algorithm, countless other scientists
in the field too had closely studied the algorithm (it is one of the most well
studied results in the field), yet no one had noticed that by having a π/3
phase shift instead of a π phase shift, the algorithm assumed a radically
new form - the original search algorithm was based on delicate interference
effects and was very sensitive to problem parameters, e.g. if the number of
solutions is not known, the performance of the algorithm suffers greatly.
Quite surprisingly, this sensitivity property is greatly improved by having
a π/3 phase shift instead of a π phase shift. I gave a routine talk about
this new algorithm in a workshop at IIT Kharagpur which Tathagat hap-
pened to be attending. A few days later he had invented his own variant
of the search algorithm which was every bit as good as the one I had (the
one I had discovered had been proved to be optimal).

After this amazing discovery, he spent about 6 months at Bell Labs sup-
ported by the ARO contract.

Norm Margolus & Jaikumar Radhakrishnan were two other prominent
researchers supported under this contract.
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6 Papers that appeared during this period

1. Quantum State Targeting Terry Rudolph and Rob Spekkens. quant-
ph/0310060 Phys. Rev. A. 70, 052306 (2004).

2. How significant are the known collision and element distinctness quantum
algorithms? Lov Grover and Terry Rudolph quant-ph/0309123 Journal
Quantum Information & Computation ,4, 201 (2004).

3. Photon number superselection and the entangled coherent state represen-
tation Barry C. Sanders, Stephen D. Bartlett, Terry Rudolph, Peter L.
Knight quant-ph/0306076 Phys. Rev. A. 68, 042329 (2003).

4. On the communication complexity of establishing a shared reference frame
Terry Rudolph and Lov Grover quant-ph/0306017 Phys. Rev. Lett. 91,
217905 (2003). (The key idea in our paper on communication complex-
ity of a shared reference frame was turned into an optical phase esti-
mation style problem the experiment of which was published in Nature:
http://arxiv.org/abs/0709.2996)

5. On continuous-variable entanglement with and without phase references,
S.J. van Enk, Terry Rudolph quant-ph/0303096

6. Unambiguous discrimination of mixed states, Terry Rudolph, Robert W.
Spekkens and Peter Shipley Turner quant-ph/0303071 Phys. Rev. A. 68,
R010301 (2003).

7. Classical and quantum communication without a shared reference frame,
Stephen D. Bartlett, Terry Rudolph, R. W. Spekkens, quant-ph/0302111
Phys. Rev. Lett. 89, 227901 (2001).

8. Quantum communication protocols using the vacuum, Xiatra Anderson,
S.J. van Enk, Terry Rudolph, quant-ph/0302091 Journal Quantum Infor-
mation & Computation, 3, 423 (2003).

9. A 2 rebit gate universal for quantum computing Terry Rudolph and Lov
Grover quant-ph/0210187

10. Creating superpositions that correspond to efficiently integrable probabil-
ity distributions Lov Grover and Terry Rudolph, quant-ph/0208112

11. Constructing physically intuitive graph invariants Terry Rudolph, quant-
ph/0206068

12. Evolution in time of an N-atom system. II. Calculation of the eigenstates
Terry Rudolph, Itay Yavin and Helen Freedhoff, quant-ph/0206067 Phys.
Rev. A. 69, 013815 (2004).

13. Quantum searching a classical database (or how we learned to stop wor-
rying and love the bomb) Terry Rudolph and Dr.(Strange)Lov Grover,
quant-ph/0206066
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14. The laws of physics and cryptographic security Terry Rudolph, quant-
ph/0202143

15. A quantum protocol for cheat-sensitive weak coin flipping Rob Spekkens
and Terry Rudolph, quant-ph/0202118 Phys. Rev. Lett. 89, 227901
(2001).

16. Comment on "The Quantum State of a Propagating Laser Field Terry
Rudolph and Barry C. Sanders quant-ph/0112020

17. A simple gate for linear optics quantum computing, T. Rudolph and J.-W.
Pan, quant-ph/0108056

18. Optimization of coherent attacks in generalizations of the BB84 quan-
tum bit commitment protocol, Rob Spekkens and Terry Rudolph, quant-
ph/0107042 Journal Quantum Information

19. Avatar Tulsi, ”Adiabatic Quantum Computation starting with a 1-D pro-
jector Hamiltonian”, Accepted for publication in Phys. Rev. A. quant-
ph/0806.0385.

20. Avatar Tulsi, ”Faster quantum-walk algorithm for the two-dimensional
spatial search” , To appear in Phys. Rev. A. quant-ph/0801.0497

21. Avatar Tulsi, ”Quantum computers can search rapidly by using almost any
selective transformation” To appear in Phys. Rev. A. quant-ph/0711.4299

22. Fixed-point quantum searching, Lov K. Grover, Physical Review Letters,
Vol. 95, Pages 150501, October 7, 2005.

23. Quantum Error Correction of Systematic Errors using a Quantum Search
Framework, Ben Reichardt & Lov K. Grover, Physical Review A 72,
042326, October 25, 2005.

24. Preserving Quantum States - A super-Zeno effect, Deepak Dhar, Lov K.
Grover, Shasanka Roy, Physical Review Letters, Volume 96, issue 10,
March 16, 2006.

25. A new algorithm for directed quantum search, T. Tulsi, L. Grover, and A.
Patel, Quantum Information & Computation, Volume 6, No. 6, September
2006.

26. Simple Algorithm for partial quantum search, Vladimir Korepin & Lov K.
Grover, Quantum Information Processing, vol. 5, number 1, page 5-10,
2006.

27. Is partial quantum searching of a database any easier? Proceedings SPAA,
2005, Jaikumar Radhakrishnan and Lov K. Grover.

28. Superlinear amplitude amplification, Lov Grover, quant-ph - June 3, 2008.
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